home
 
 
 
Dusty Plasma to STP Density
<?php
											 
											/*
												Dusty Plasma to STP Density
												© Charles Chandler
												http://qdl.scs-inc.us/?top=14095
											*/
											 
											/*
												This code finds the temperature and pressure of a dusty plasma,
												if compressed down to the density of the Earth's atmosphere.
												The result is 266 MK.
											*/
											 
											define('p', 1.67262178 * pow(10, -27)); // mass of proton, in kilograms
											$v['deuteronMolarMass'] = 2.013553212745e-3; // kg/mol
											$v['molarGasConstant' ] = 8.3144598;
											$v['solarMass'        ] = 1.9891e30; // kg
											 
											// Define the non-derived characteristics of the dusty plasma.
											// The volume of the dusty plasma assumes that it has as much
											// matter as the Sun, just at far less density.
											$v['dusty_density'    ] = 100 * p * 2 * 1e6; // 100 particles of diatomic hydrogen per cc, in kg/m^3
											$v['dusty_volume'     ] = $v['solarMass'] / $v['dusty_density']; // volume, as mass / (mass/vol)
											$v['dusty_temp'       ] = 10; // kelvins
											 
											// Find the pressure of the dusty plasma,
											// assuming that it is all diatomic hydrogen,
											// with the same molar mass as a deuteron.
											// P = (rho * R* T) / M
											$v['dusty_pressure'   ] =
											($v['dusty_density'] * $v['molarGasConstant'] * $v['dusty_temp'])
											/
											$v['deuteronMolarMass'];
											 
											// From this we can set a constant.
											// PV^(7/5)
											$v['const PV^(7/5)'   ] = $v['dusty_pressure'] * pow($v['dusty_volume'], 7/5);
											 
											$v['stpAirDensity'    ] = 1.225; // kg/m^3
											$v['compressionRatio' ] = $v['stpAirDensity'] / $v['dusty_density'];
											$v['compressedVol'    ] = $v['dusty_volume'] / $v['compressionRatio'];
											 
											// Now we find the expected pressure after compression into the volume of the Sun.
											// P = adiabatic constant / new volume
											$v['compressedPres'   ] = $v['const PV^(7/5)'] / pow($v['compressedVol'], 7/5);
											 
											// Then we can find the expected temperature in kelvins.
											// constant = PV / T
											$v['const PV/T'       ] = ($v['dusty_pressure'] * $v['dusty_volume']) / $v['dusty_temp'];
											 
											// Now the end T = PV / constant
											$v['compressedTemp'   ] = ($v['compressedPres'] * $v['compressedVol']) / $v['const PV/T'];
											 
											/* Results:
												 
												deuteronMolarMass = 2.013553212745e-3
												molarGasConstant  = 8.3144598
												solarMass         = 1.9891e30
												dusty_density     = 3.34524356E-19
												dusty_volume      = 5.946054343499E+48
												dusty_temp        = 10
												dusty_pressure    = 1.3813338989393E-14
												const PV^(7/5)    = 2.6559450994503E+54
												stpAirDensity     = 1.225
												compressionRatio  = 3.6619157261004E+18
												compressedVol     = 1.6237551020408E+30
												compressedPres    = 1347380796834.9
												const PV/T        = 8.2134864296107E+33
												compressedTemp    = 266368790.16019
												 
											*/
											 
										?>

← PREV Powered by Quick Disclosure Lite
© 2010~2021 SCS-INC.US
UP ↑