home
 
 

 
Re: Pulsars and Cepheids
Lloyd said:
It seems like there'd be some variation in the timing of pulses, if they're not due to rotating lighthouse beacons.
Actually, there IS some variation. It isn't a simple sine wave that gets generated — the waveform is spikey, and the frequency isn't 100% steady. I'm thinking that the toroidal plasmoid, with the magnetic pinch effect pulling in, and the electrostatic repulsion pushing back out, meters its own fuel. When fusion occurs, particles are ejected, making room for more particles in the center of the ring, where the next fusion event will occur. The charged particles are forced in by the magnetic pinch effect, and distributed evenly by the electrostatic repulsion, resulting in a nice consistent quantity of new fuel for the next fusion cycle. But any irregularity in the available fuel will create spikes in the output.
 
Speaking of beacons, I'd like to mention another factor that I haven't fully investigated, but which I consider to be important in focusing the beam.
 
If we consider a ring, 1 meter wide, and with the radius of the orbit of Neptune, that is hosting nuclear fusion, how will the light propagate away from that ring? Since it's not a point source, we have to consider the effects of wave phases.
 
To understand this, we should first consider how a phased array radar (PAR) works. Instead of 1 transmitter like in a conventional radar, a PAR has a bunch of them, and the phase of the waves being generated by each can be controlled quite precisely. As a consequence, in one particular direction coming off of the array, all of the waves will be perfectly in phase, and the constructive interference will create a powerful wavetrain in that direction. In all other directions, destructive interference gets the waves to cancel each other out, resulting in little-to-no waves. As a consequence, they effectively get a beam projecting outward from the radar that can be pointed. And because the "pointing" is entirely electronic, they can "point" the radar instantaneously in any direction they want. (This is important in tracking high-velocity targets, which can't be tracked with conventional radars, where you have to aim a physical apparatus at the target, introducing physical limits as to how fast you can point the thing.)
 
So back to the toroidal plasmoid, moving away from it along the axis, the waves being issued from every point along the ring have the chance to combine into one wavetrain, with the energy of all of the points along the ring. In any other direction, the waves cancel each other out. So phase interference magnifies the EM waves normal to the ring, along the axis of rotation, like a phased array radar.
 
I "think" that I've read somewhere that EM waves that are close to being in phase will result in all of them falling perfectly into phase, and moving in precisely the same direction. Brant could probably answer this, but I "think" that this is one of the things that helps create lasers — there is a magnification coming from multiple waves getting into perfect step with each other, and this focuses the beam in the direction that they all agree on.
 
If this is correct, the "lighthouse beacon" is actually a toroidal plasmoid in an implosion/explosion cycle, generating a focused beam by the phased array effect.

↑ UP Powered by Quick Disclosure Lite
© 2010~2021 SCS-INC.US
UP ↑