home
 
 

 
Re: Pulsars and Cepheids
Lloyd said:
I'd be curious if you come up with details about the pulsar fusion sputtering.
I'm basically saying that it's an implosion/explosion cycle. Nuclear fusion tends to be self-defeating, since the energy released tends to disperse the matter, which reduces the chance of more fusion happening. Ah but if the surrounding matter is under pressure, the dispersion will create an equal-but-opposite convergence. So one spurt of fusion disperses the matter, but then the matter collapses again, and when it does, the chance of fusion goes back up again. And that can cause another spurt of fusion. Thus the matter can fall into an implosion/explosion cycle, where the implosion causes fusion, which disperses the matter, which then collapses again.
 
This can be duplicated in the laboratory, but the process plays out pretty fast, after just a couple of cycles, because the matter implodes upon a point where the previous fusion has already used up all of the available fuel. In other words, imagine setting off a stick of dynamite in the air. This will create an explosion, followed by an equal-by-opposite implosion. The point of implosion will be exactly where the stick of dynamite used to be. But now there's nothing to blow up under the extreme pressures of the implosion. So there's no repetitive cycle. The same is true if the "dynamite" was hydrogen that fused into helium. On the next implosion, a lot of the hydrogen has already been fused, and fusing helium into something even heavier would take a lot more pressure, so that doesn't happen. Hence the secondary explosion has less energy than the primary, and the tertiary is less than the secondary, and before long, the whole process stops.
 
But what if it's a "natural tokamak" (a.k.a., toroidal plasmoid), and matter is still streaming in? Then you might have enough fuel working its way into the reactor to perpetuate the process.
 
Then the question is: how fast can these cycles go? The answer just depends on the speed of sound in the surrounding matter. The thunder issued by lightning here on Earth isn't just a single percussive event — it's a wavetrain. When the discharge channel collapses, the compression heats the air to 25,000 degrees C, which is hotter than the electric current was (i.e., 2,500 degrees C). The extreme temperature causes the secondary expansion. Then there is a secondary implosion, and this repeat thousands of times to produce the 1/2 second wavetrain that we call "thunder". So a frequency of thousands of events per second is easily possible. At much hotter temperatures in a nuclear fusion reactor, where the speed of sound might be something like 1000 meters per second, to get 1000 events per second, the implosion/explosion range would be just 1 meter.
 
As a toroidal plasmoid, with matter moving at relativistic speeds, such that the magnetic pinch effect gets the matter consolidated enough that fusion becomes possible, the radius of the plasmoid would have to be huge — otherwise, the centrifugal force of the relativistic matter would be too great. So maybe a pulsar is a toroidal plasmoid with a radius not of a typical star like our Sun, but rather, of our entire solar system. So imagine a ring, 1 meter wide, with a radius like the orbit of Neptune, and with matter zipping around at 9/10 the speed of light. Now, would an implosion/explosion cycle that started in one little segment of the ring be capable of propagating all of the way around the ring, and getting the whole thing to resonate at the same frequency? I think so. A little explosion at one point along the ring will radiate matter outward. The implosion right at that point will be perfect to create another round of fusion. Away from that point, it will be less than perfect, but still better than chance. So yes, I think that an implosion/explosion cycle that starts at one point on the ring will work its way around the whole ring, and eventually get the whole thing resonating at the same frequency.

↑ UP Powered by Quick Disclosure Lite
© 2010~2021 SCS-INC.US
UP ↑