<?php
/*
Code
© Charles Chandler
http://qdl.scs-inc.us/?top=9247
*/
/*
Calculate the solar energy budget from the energy
stored in the momentum of a collapsing dusty plasma.
watt = joule / second, second = joule / watt
*/
// G I V E N S
if (kIsPublic) {
$coDataPgID = 8906;
$solarFacts = 4798;
$synopsis = 11416;
$abiabats = 12057;
} else {
$coDataPgID = 12633;
$solarFacts = 7098;
$synopsis = 13926;
$abiabats = 13077;
}
$v['luSpeedOfLight' ] = LU($coDataPgID, 'speed of light in vacuum');
$v['luSolarPressure'] = LU($solarFacts, 'solar pressure (ave)'); // Pa
$v['luSolarMass' ] = LU($solarFacts, 'solar mass'); // kg
$v['luSolarWatts' ] = LU($solarFacts, 'solar watts');
$v['luSolarArea' ] = LU($solarFacts, 'solar surface area');
$v['luAdiabaticPres'] = LU($abiabats, 'sun_pressure'); // Pa
$v['luPlasmaHeat' ] = LU($synopsis, 'conserveHeat'); // calculated by #7981
// Somewhere (?) I read that dusty plasmas implode at a rate that would traverse the
// distance from the heliopause to the orbit of Mercury in 6 months, which is 945 km/s.
// But for starters, we're going with 700 km/s, and later, we recalculate this anyway.
$v['luPlasmaSpeed' ] = LU($synopsis, 'metersPerSec'); // m/s
// Noerdlinger, P. D., 2008:
// Solar Mass Loss, the Astronomical Unit,
// and the Scale of the Solar System.
// arxiv, 0801.3807
$v['luMassLossKgS' ] = 1.375e9; // kg/s
$v['luMassLossKgS' ] = LU($synopsis, 'massLossKgS'); // kg/s - higher number
// C A L C U L A T I O N S
$v['momentum700' ] = .5 * $v['luSolarMass'] * $v['luPlasmaSpeed'] * $v['luPlasmaSpeed'];
$v['totalJoules700' ] = $v['luPlasmaHeat'] + $v['momentum700'];
$v['secsToGo' ] = $v['luSolarMass'] / $v['luMassLossKgS'];
$v['yearsToGo' ] = $v['secsToGo'] / kSecsInYear;
// Double-check seconds to go, as joules / watts.
/*
secsToGo 3.4593043478261E+20
secsToGo2 2.9964036672977E+16
hmmm...
That's four orders of magnitude too low, compared to the expectation based on mass loss. So mass
loss bumps up the speed of the implosion to get the joules that it wants
*/
$v['secsToGo2' ] = $v['totalJoules700'] / $v['luSolarWatts'];
$v['massLossWatts' ] = $v['luSolarWatts'] / 2;
// watt = joule / sec, watt * sec = joule
$v['massLossJoules' ] = ($v['massLossWatts'] * $v['secsToGo']) - $v['luPlasmaHeat'];
$v['new_dp_velocity'] = sqrt($v['massLossJoules'] / (.5 * $v['luSolarMass']));
$v['percentOfC' ] = ($v['new_dp_velocity'] / $v['luSpeedOfLight']) * 100;
// Figure out how long the collision of the dusty plasma took, knowing
// the velocity, and the pressure. The reasoning is that F=ma, and I know the mass of the
// Sun, and I know the resulting pressure, and I know the velocity.
// Find how far the implosion overshot the hydrostatic equilibrium. It had to at least
// overshoot it to the point that it is now. So the excess pressure, over and above what
// gravity could contain, is the minimum overshoot.
$v['excess_pascals' ] = $v['luAdiabaticPres'] - $v['luSolarPressure'];
// Now find how much force it took to achieve that overshoot.
// Pressure = Force / area, Force = Pressure * area
$v['excess_newtons' ] = $v['excess_pascals'] * $v['luSolarArea'];
// Knowing the force and the mass, we can find the acceleration.
// F=ma, a=F/m
$v['acceleration' ] = $v['excess_newtons'] / $v['luSolarMass'];
// T=V/a
$v['secs_to_stop' ] = $v['new_dp_velocity'] / $v['acceleration'];
$v['mins_to_stop' ] = $v['secs_to_stop'] / kSecsInMin;
?>
|