home
 
 

 
Preface
© Charles Chandler
 
People who have read previous versions of this work might be surprised to see that the contentions herein continue to evolve. Unlike academic works, which are permanent records of opinions as they were at the time, and to which scholars become attached for the sake of credibility, this is a dynamic work, continually pursuing a more accurate description of the topic. Hence this work has changed, as comments and criticisms from readers like you have created opportunities for improvements, and it will continue to change. This causes confusion, but that's better than tenacity in the face of legitimate criticisms. Perhaps this will always be a work-in-progress, as it is doubtful that any of us will live to see something as complex as a tornadic supercell completely described. But if we should ever have to choose between truth and credibility, we must always choose truth, because credibility isn't worth much without it. And while the work that remains to be done dwarfs what is already here, it is nevertheless arguable that this has emerged as the most complete theory of tornadic storms ever presented to the public. So the open-minded, evolutionary method is working, and therefore, it will persist.
 
Also, please note that in meteorology, the term "thermodynamics" is used in the narrowest of its senses: the dynamics of thermal fluxes. It is also assumed that the topic is open-air convective systems. Within this context, thermodynamics is the study of heat sources and sinks that alter the density of the air, which in the presence of gravity results in airflows, which can be quantified in fluid dynamic terms. Other disciplines use "thermodynamics" to refer to general principles of energy and entropy that apply to all forces, including electromagnetism. But in meteorology, electromagnetism and thermodynamics are studied separately. For example, the following is a quote from an FAQ page maintained by NSSL.
Question: Are there electromagnetic or magnetohydrodynamic explanations for the development of tornadoes?
Answer: As far as scientists understand, tornadoes are formed and sustained by a purely thermodynamic process.
The present work takes a very different position, and demonstrates that electromagnetism has to be promoted to the status of a peer with thermodynamics if we are to achieve a more accurate description of the phenomena. But the point here is that the reader may find it odd to hear electromagnetism and thermodynamics being discussed as peers — that's not the correct relationship between these two sets of principles. Yet in meteorology, this is conventional usage of the terms.

↑ UP Powered by Quick Disclosure Lite
© 2010~2021 SCS-INC.US
NEXT →