home
 
 
 
Code
<?php
											 
											/*
												Code
												© Charles Chandler
												http://qdl.scs-inc.us/?top=11566
											*/
											 
											/*
												Prialnik, D., 2000:
												An Introduction to the Theory of Stellar Structure and Evolution.
												Cambridge University Press
												Williams, J. P.; Blitz, L.; McKee, C. F., 1999:
												The Structure and Evolution of Molecular Clouds:
												from Clumps to Cores to the IMF. arXiv:astro-ph
												Richardson, J. D.:
												The Solar Wind: Probing the Heliosphere with Multiple Spacecraft
												 
												gmc = giant molecular cloud
												dp_ = dusty plasma
											*/
											 
											// Some of the values are pulled from tables in QDL posts. The LU() 
											// function retrieves values, given the post ID and the value name.
											$coDataPgID = 8906;
											$solarFacts = 4798;
											 
											// I'm getting two different densities here, depending on which numbers
											// I use. I "think" that the "100 particles per cm^3" is probably more
											// accurate, so I should go with that. Where they said that GMCs can be
											// up to 6 million solar masses, that was an upper limit, not an average.
											// But that produces much higher temperatures, and thus total energies.
											// Of course, that will relax the requirement for kinetic energy.
											$v['solarMass'        ] = LU($solarFacts, 'solar mass'); // kg
											$v['solarRadius'      ] = LU($solarFacts, 'solar radius');
											$v['solarVolume'      ] = VolumeOfSphere($v['solarRadius']);
											$v['deuteronMolarMass'] = LU($coDataPgID, 'deuteron molar mass'); // kg/mol
											$v['molarGasConstant' ] = LU($coDataPgID, 'molar gas constant');
											//$v['gmcRadius'      ] = (9.5 / 2) * pow(10, 14) * 1000;     // radius of gmc, in m
											//$v['gmcVolume'      ] = VolumeOfSphere($v['gmcRadius']);    // volume of gmc, in m^3
											$v['dp_density'       ] = 100 * 1.672621777e-27 * 2 * 1e6;    // 100 particles of diatomic hydrogen per cc
											$v['dp_volume'        ] = $v['solarMass'] / $v['dp_density'];    // volume, as mass / (mass/vol)
											if (0) {
											$v['gmcMass'      ] = 6000000;                            // mass of gmc, in solar masses
											$v['dp_volume'    ] = $v['gmcVolume'] / $v['gmcMass'];    // volume to produce 1 Sun, in m^3
											$v['dp_density'   ] = $v['solarMass'] / $v['dp_volume'];
											}
											$v['dp_temperature'   ] = 10;
											 
											// Find the pressure of the dusty plasma,
											// assuming that it is all diatomic hydrogen,
											// with the same molar mass as a deuteron.
											// P = (rho * R * T) / M
											$v['dp_pressure'      ] =
											($v['dp_density'  ] * $v['molarGasConstant'] * $v['dp_temperature'])
											/
											$v['deuteronMolarMass'];
											 
											// From this we can get a constant.
											// PV^(7/5)
											$v['const PV^(7/5)'   ] = $v['dp_pressure'] * pow($v['dp_volume'], 7/5);
											 
											// Now we find the expected pressure after compression into the volume of the Sun.
											// P = adiabatic constant / new volume
											$v['sun_pressure'     ] = $v['const PV^(7/5)'] / pow($v['solarVolume'], 7/5);
											 
											// Then we can find the expected temperature in kelvins.
											// constant = PV / T
											$v['const PV/T'       ] = ($v['dp_pressure'] * $v['dp_volume']) / $v['dp_temperature'];
											// Now the end T = PV / constant
											$v['sun_temperature'  ] = ($v['sun_pressure'] * $v['solarVolume']) / $v['const PV/T'];
											 
											// Find the joules if the specific heat capacity
											// was that of a 75/25 mix of hydrogen and helium.
											$v['energy_heat_1'    ] = $v['solarMass'] * $v['sun_temperature'] * 12026.25;
											 
										?>

← PREV Powered by Quick Disclosure Lite
© 2010~2021 SCS-INC.US
UP ↑