<?php
/*
Code
© Charles Chandler
http://qdl.scs-inc.us/?top=11566
*/
/*
Prialnik, D., 2000:
An Introduction to the Theory of Stellar Structure and Evolution.
Cambridge University Press
Williams, J. P.; Blitz, L.; McKee, C. F., 1999:
The Structure and Evolution of Molecular Clouds:
from Clumps to Cores to the IMF. arXiv:astro-ph
Richardson, J. D.:
The Solar Wind: Probing the Heliosphere with Multiple Spacecraft
gmc = giant molecular cloud
dp_ = dusty plasma
*/
// Some of the values are pulled from tables in QDL posts. The LU()
// function retrieves values, given the post ID and the value name.
$coDataPgID = 8906;
$solarFacts = 4798;
// I'm getting two different densities here, depending on which numbers
// I use. I "think" that the "100 particles per cm^3" is probably more
// accurate, so I should go with that. Where they said that GMCs can be
// up to 6 million solar masses, that was an upper limit, not an average.
// But that produces much higher temperatures, and thus total energies.
// Of course, that will relax the requirement for kinetic energy.
$v['solarMass' ] = LU($solarFacts, 'solar mass'); // kg
$v['solarRadius' ] = LU($solarFacts, 'solar radius');
$v['solarVolume' ] = VolumeOfSphere($v['solarRadius']);
$v['deuteronMolarMass'] = LU($coDataPgID, 'deuteron molar mass'); // kg/mol
$v['molarGasConstant' ] = LU($coDataPgID, 'molar gas constant');
//$v['gmcRadius' ] = (9.5 / 2) * pow(10, 14) * 1000; // radius of gmc, in m
//$v['gmcVolume' ] = VolumeOfSphere($v['gmcRadius']); // volume of gmc, in m^3
$v['dp_density' ] = 100 * 1.672621777e-27 * 2 * 1e6; // 100 particles of diatomic hydrogen per cc
$v['dp_volume' ] = $v['solarMass'] / $v['dp_density']; // volume, as mass / (mass/vol)
if (0) {
$v['gmcMass' ] = 6000000; // mass of gmc, in solar masses
$v['dp_volume' ] = $v['gmcVolume'] / $v['gmcMass']; // volume to produce 1 Sun, in m^3
$v['dp_density' ] = $v['solarMass'] / $v['dp_volume'];
}
$v['dp_temperature' ] = 10;
// Find the pressure of the dusty plasma,
// assuming that it is all diatomic hydrogen,
// with the same molar mass as a deuteron.
// P = (rho * R * T) / M
$v['dp_pressure' ] =
($v['dp_density' ] * $v['molarGasConstant'] * $v['dp_temperature'])
/
$v['deuteronMolarMass'];
// From this we can get a constant.
// PV^(7/5)
$v['const PV^(7/5)' ] = $v['dp_pressure'] * pow($v['dp_volume'], 7/5);
// Now we find the expected pressure after compression into the volume of the Sun.
// P = adiabatic constant / new volume
$v['sun_pressure' ] = $v['const PV^(7/5)'] / pow($v['solarVolume'], 7/5);
// Then we can find the expected temperature in kelvins.
// constant = PV / T
$v['const PV/T' ] = ($v['dp_pressure'] * $v['dp_volume']) / $v['dp_temperature'];
// Now the end T = PV / constant
$v['sun_temperature' ] = ($v['sun_pressure'] * $v['solarVolume']) / $v['const PV/T'];
// Find the joules if the specific heat capacity
// was that of a 75/25 mix of hydrogen and helium.
$v['energy_heat_1' ] = $v['solarMass'] * $v['sun_temperature'] * 12026.25;
?>
|